首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3639篇
  免费   817篇
  国内免费   615篇
测绘学   64篇
大气科学   9篇
地球物理   1056篇
地质学   3319篇
海洋学   117篇
天文学   2篇
综合类   196篇
自然地理   308篇
  2024年   8篇
  2023年   18篇
  2022年   93篇
  2021年   166篇
  2020年   135篇
  2019年   145篇
  2018年   156篇
  2017年   143篇
  2016年   148篇
  2015年   169篇
  2014年   239篇
  2013年   336篇
  2012年   223篇
  2011年   218篇
  2010年   234篇
  2009年   226篇
  2008年   261篇
  2007年   287篇
  2006年   305篇
  2005年   252篇
  2004年   201篇
  2003年   173篇
  2002年   126篇
  2001年   132篇
  2000年   108篇
  1999年   125篇
  1998年   103篇
  1997年   62篇
  1996年   60篇
  1995年   60篇
  1994年   24篇
  1993年   31篇
  1992年   23篇
  1991年   16篇
  1990年   13篇
  1989年   8篇
  1988年   16篇
  1987年   8篇
  1986年   3篇
  1985年   7篇
  1984年   5篇
  1983年   1篇
  1982年   2篇
  1976年   1篇
  1973年   1篇
排序方式: 共有5071条查询结果,搜索用时 46 毫秒
11.
Evaluation of slope stability, especially in the absence of a proper bed such as marine soils, is one of the most important issues in geotechnical engineering. Using geogrid layers to enhance the strength and stability of embankments is regarded as a commendable stabilization method. On the other hand, groundwater level erratically fluctuates in coastal areas. Therefore, the aim of this research is to study the effects of groundwater level changes on stability of a geogrid-reinforced slope on loose marine soils in Qeshm Island, Iran. At first, geotechnical properties of the site were obtained by comprehensive series of geotechnical laboratory and in situ tests. Then, by simultaneous changes of groundwater level and several parameters such as embankment slope, loading, geogrid length, geogrid number, and tensile strength of geogrid, different characteristics such as embankment safety factor (SF), vertical and horizontal displacements at embankment top and embankment base were studied. It was observed that groundwater level had significant effects on behavior of the embankment. For most of the observations, by decreasing the groundwater level, the displacements decreased and consequently safety factor increased. Increasing the length, number, and tensile strength of geogrid led to the reduction of displacements and an increase in the safety factor.  相似文献   
12.
为解决以往模型未考虑地下水位相关影响因素的问题,探讨长短期记忆(LSTM)神经网络在地下水位预测中的应用,利用长短期记忆神经网络,采用多变量输入的方式,构建了基于多变量LSTM神经网络的地下水水位预测模型。以泰安市岱岳区J1号监测井为例,采用2001-2014年地下水水位动态监测资料与相关影响因素数据,利用多变量LSTM神经网络对2015-2016年地下水位进行预测,并与单变量LSTM神经网络和反向传播(BP)神经网络进行对比。研究结果表明:以相关影响变量为输入的BP神经网络无法考虑时序变化规律,预测均方根误差最大,为2.399 3;以地下水位为变量输入的单变量LSTM神经网络仅能根据时序变化作出相应预测,无法考虑相关变量影响,预测均方根误差为2.102 2;基于多变量输入的LSTM神经网络的预测精度显著高于单变量LSTM神经网络和BP神经网络,预测均方根误差最小,仅为1.919 1。总体上,多变量LSTM神经网络地下水位预测模型仅在某些峰值处误差较大,但总体预测效果较为理想。  相似文献   
13.
Effectively estimating groundwater recharge is critical to manage water resources, especially in arid and semi-arid regions as impacted by intensive human activities and climate changes. Rare insights have been gained into groundwater recharge since direct observation is hard to carry out. Although several methods are currently available to estimate groundwater recharge, the estimated results may cover noticeable bias. The behaviours of different methods based on different conceptual frameworks and exhibiting different levels of complexity should be examined to estimate actual groundwater recharge. This study aims to assess the performance of four common methods to estimate groundwater recharge. For this end, large-scale lysimeters equipped with soil water content sensors and water table sensors were set up at a research site established in Guanzhong Basin of China. The data achieved by 1-year observation were employed to compare four estimation methods. As revealed from the results, the following findings are drawn. (a) Groundwater level fluctuation (GLF) method is simple, whereas its accuracy is determined by specific yield, and adopting a water balance method to estimate specific yield can considerably enhance the accuracy of GLF. (b) The calibrated numerical model can obtain the optimal result compared with the other methods, whereas long-term observation data are required for parameter calibration. (c) In the water balance method, the maximum entropy production (MEP) model and a practical method (estimating evaporation between two rainfall events) were used to calculate evaporation. As indicated by the results, water balance method combined with MEP is capable of obtaining more reliable results of groundwater recharge compared with the practical method. (d) With an analytical model based on linearized Richards' equation, accurate results can be achieved. What is more, the analytical model only needs the measurement of soil moisture near the surface. The limitation of this method is that it is difficult to determine the maximal water flux. The mentioned findings are of critical implications to the management and sustainable development of groundwater.  相似文献   
14.
Beaver dam analogues (BDAs) are a cost-effective stream restoration approach that leverages the recognized environmental benefits of natural beaver dams on channel stability and local hydrology. Although natural beaver dams are known to exert considerable influence on the hydrologic conditions of a stream system by mediating geomorphic processes, nutrient cycling, and groundwater–surface water interactions, the impacts of beaver-derived restoration methods on groundwater–surface water exchange are poorly characterized. To address this deficit, we monitored hyporheic exchange fluxes and streambed porewater biogeochemistry across a sequence of BDAs installed along a central Wyoming stream during the summer of 2019. Streambed fluxes were quantified by heat tracing methods and vertical hydraulic gradients. Biogeochemical activity was evaluated using major ion porewater chemistry and principal component analysis. Vertical fluxes of approximately 1.0 m/day were observed around the BDAs, as was the development of spatially heterogeneous zones of nitrate production, groundwater upwelling, and anaerobic reduction. Strong contrasts in hyporheic zone processes were observed across BDAs of differing sizes. This suggests that structures may function with size-dependent behaviour, only altering groundwater–surface water interactions after a threshold hydraulic step height is exceeded. Patterns of hyporheic exchange and biogeochemical cycling around the studied BDAs resemble those around natural beaver dams, suggesting that BDAs may provide comparable benefits to channel complexity and near-stream function over a 1-year period.  相似文献   
15.
利用断层两盘岩溶水化学特征判断其导隔水性对于我国华北型煤田水害防治具有十分重要的实践意义。以顾北矿F104断层两侧太原组岩溶地下水为研究对象,在分析断层两盘水文地质条件基础上,采用Piper三线图、离子组合比和主成分法,分析了主要组分来源及水-岩作用差异性,并采用PHREEQC软件对岩溶地下水进行反向水化学模拟。结果表明:南北区岩溶水均存在方解石和白云石的溶解和沉淀现象,南区阳离子交换吸附和脱硫酸作用程度强于北区,而北区黄铁矿氧化和岩盐溶解作用较南区明显,南北两区水化学环境及水-岩作用存在显著差异,进而推断F104断层具有较好的阻水性,且影响了其两侧的氧化-还原环境及温度差异,控制着地下水径流方向和水-岩作用程度。   相似文献   
16.
Changes in streamflow and water table elevation influence oxidation–reduction (redox) conditions near river–aquifer interfaces, with potentially important consequences for solute fluxes and biogeochemical reaction rates. Although continuous measurements of groundwater chemistry can be arduous, in situ sensors reveal chemistry dynamics across a wide range of timescales. We monitored redox potential in an aquifer adjacent to a tidal river and used spectral and wavelet analyses to link redox responses to hydrologic perturbations within the bed and banks. Storms perturb redox potential within both the bed and banks over timescales of days to weeks. Tides drive semidiurnal oscillations in redox potential within the streambed that are absent in the banks. Wavelet analysis shows that tidal redox oscillations in the bed are greatest during late summer (wavelet magnitude of 5.62 mV) when river stage fluctuations are on the order of 70 cm and microbial activity is relatively high. Tidal redox oscillations diminish during the winter (wavelet magnitude of 2.73 mV) when river stage fluctuations are smaller (on the order of 50 cm) and microbial activity is presumably low. Although traditional geochemical observations are often limited to summer baseflow conditions, in situ redox sensing provides continuous, high‐resolution chemical characterization of the subsurface, revealing transport and reaction processes across spatial and temporal scales in aquifers.  相似文献   
17.
Submarine groundwater discharge (SGD) plays an important role in coastal biogeochemical processes and hydrological cycles, particularly off volcanic islands in oligotrophic oceans. However, the spatial and temporal variations of SGD are still poorly understood owing to difficulty in taking rapid SGD measurements over a large scale. In this study, we used four airborne thermal infrared surveys (twice each during high and low tides) to quantify the spatiotemporal variations of SGD over the entire coast of Jeju Island, Korea. On the basis of an analytical model, we found a linear positive correlation between the thermal anomaly and squares of the groundwater discharge velocity and a negative exponential correlation between the anomaly and water depth (including tide height and bathymetry). We then derived a new equation for quantitatively estimating the SGD flow rates from thermal anomalies acquired at two different tide heights. The proposed method was validated with the measured SGD flow rates using a current meter at Gongcheonpo Beach. We believe that the method can be effectively applied for rapid estimation of SGD over coastal areas, where fresh groundwater discharge is significant, using airborne thermal infrared surveys.  相似文献   
18.
Topography and landscape characteristics affect the storage and release of water and, thus, groundwater dynamics and chemistry. Quantification of catchment scale variability in groundwater chemistry and groundwater dynamics may therefore help to delineate different groundwater types and improve our understanding of which parts of the catchment contribute to streamflow. We sampled shallow groundwater from 34 to 47 wells and streamflow at seven locations in a 20‐ha steep mountainous catchment in the Swiss pre‐Alps, during nine baseflow snapshot campaigns. The spatial variability in electrical conductivity, stable water isotopic composition, and major and trace ion concentrations was large and for almost all parameters larger than the temporal variability. Concentrations of copper, zinc, and lead were highest at sites that were relatively dry, whereas concentrations of manganese and iron were highest at sites that had persistent shallow groundwater levels. The major cation and anion concentrations were only weakly correlated to individual topographic or hydrodynamic characteristics. However, we could distinguish four shallow groundwater types based on differences from the catchment average concentrations: riparian zone‐like groundwater, hillslopes and areas with small upslope contributing areas, deeper groundwater, and sites characterized by high magnesium and sulfate concentrations that likely reflect different bedrock material. Baseflow was not an equal mixture of the different groundwater types. For the majority of the campaigns, baseflow chemistry most strongly resembled riparian‐like groundwater for all but one subcatchment. However, the similarity to the hillslope‐type groundwater was larger shortly after snowmelt, reflecting differences in hydrologic connectivity. We expect that similar groundwater types can be found in other catchments with steep hillslopes and wet areas with shallow groundwater levels and recommend sampling of groundwater from all landscape elements to understand groundwater chemistry and groundwater contributions to streamflow.  相似文献   
19.
Groundwater transit time is an essential hydrologic metric for groundwater resources management. However, especially in tropical environments, studies on the transit time distribution (TTD) of groundwater infiltration and its corresponding mean transit time (mTT) have been extremely limited due to data sparsity. In this study, we primarily use stable isotopes to examine the TTDs and their mTTs of both vertical and horizontal infiltration at a riverbank infiltration area in the Vietnamese Mekong Delta (VMD), representative of the tropical climate in Asian monsoon regions. Precipitation, river water, groundwater, and local ponding surface water were sampled for 3 to 9 years and analysed for stable isotopes (δ18O and δ2H), providing a unique data set of stable isotope records for a tropical region. We quantified the contribution that the two sources contributed to the local shallow groundwater by a novel concept of two‐component lumped parameter models (LPMs) that are solved using δ18O records. The study illustrates that two‐component LPMs, in conjunction with hydrological and isotopic measurements, are able to identify subsurface flow conditions and water mixing at riverbank infiltration systems. However, the predictive skill and the reliability of the models decrease for locations farther from the river, where recharge by precipitation dominates, and a low‐permeable aquitard layer above the highly permeable aquifer is present. This specific setting impairs the identifiability of model parameters. For river infiltration, short mTTs (<40 weeks) were determined for sites closer to the river (<200 m), whereas for the precipitation infiltration, the mTTs were longer (>80 weeks) and independent of the distance to the river. The results not only enhance the understanding of the groundwater recharge dynamics in the VMD but also suggest that the highly complex mechanisms of surface–groundwater interaction can be conceptualized by exploiting two‐component LPMs in general. The model concept could thus be a powerful tool for better understanding both the hydrological functioning of mixing processes and the movement of different water components in riverbank infiltration systems.  相似文献   
20.
2013年以来,济南市为正确处理好保泉和市民饮用优质地下水的关系,组织实施了地表水转换地下水补源系列工程,旨在补源保泉的前提下开采地下水。大辛河地表水转地下水工程是其中重要的组成部分,为了查明大辛河渗漏补源后地下水的补给方向、径流速度等,在大辛河主要渗漏段开展了地下水示踪试验。结果显示:地下水渗漏补源后沿渗漏段—龙奥大厦—济南东区供水奥体加压站—贤文小区一线大体自南向北径流,视径流速度约45m/d,越往两侧流速越缓慢,表明大辛河地表水转地下水工程主要对东郊水源地进行补给,对市区四大泉群补给较弱。示踪试验得出的结论,对大辛河地表水转地下水工程运行具有重要指导作用,对后期管理部门合理规划补源、开采布局具有重要的借鉴意义,促进济南保泉和供水的有机统一。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号